
_____________________________________Збірник наукових праць ЖВІ. 2025. Випуск 29 

© В. А. Романько, О. М. Срібний, 2025 

 125 

УДК 681.3.06;004.89;623.4                             DOI: 10.46972/2076-1546.2025.29.09 

В. А. Романько, О. М. Срібний 

ІНТЕГРАЦІЯ НЕЙРОННОГО ФІЛЬТРА КАЛМАНА В СИСТЕМУ НАВЕДЕННЯ 

ВИСОКОДИНАМІЧНИХ АПАРАТІВ 

У статті розглянуто завдання підвищення точності оцінювання стану 

високодинамічних рухомих об’єктів, зокрема безпілотних літальних апаратів, наземних 

роботизованих платформ та керованих боєприпасів, шляхом інтеграції методів 

штучного інтелекту в структуру фільтра Калмана. Показано, що класичний фільтр 

Калмана, незважаючи на широке застосування в системах наведення та навігації, має 

суттєві обмеження в умовах нелінійної динаміки, негаусівських завад і наявності викидів у 

вимірюваннях датчиків. Запропоновано гібридний підхід, у межах якого фільтр Калмана 

доповнюється нейронною мережею, що формує адаптивну корекцію оцінювання вектора 

стану. Розроблено математичну модель мультисенсорного злиття даних, яка поєднує 

вимірювання інерціального вимірювального модуля, супутникової навігаційної системи, 

а також магнітометра та оптичної камери.  

Описано структуру розробленого алгоритму, процес формування вхідного вектора 

ознак для нейронної мережі, процедуру навчання на основі результатів імітаційного 

моделювання й використання скоригованої оцінки стану в контурах наведення та 

стабілізації. Результати моделювання демонструють зниження середньоквадратичної 

похибки оцінювання координат і швидкостей приблизно на 15–40% порівняно з класичним 

фільтром Калмана, а також підвищення завадостійкості до викидів у супутникових 

вимірюваннях і зростання рівня шуму інерціальних датчиків. У статті також 

обґрунтовано можливість реалізації запропонованого алгоритму на бортових 

обчислювальних модулях з обмеженими обчислювальними ресурсами. Подальші 

дослідження доцільно спрямувати на інтеграцію рекурентних архітектур простору 

станів у структуру НФК. 

Ключові слова: фільтр Калмана; нейронний фільтр Калмана; злиття даних 

датчиків; інерціальна навігація; безпілотний літальний апарат; самонавідний боєприпас; 

штучний інтелект; система наведення; високодинамічний апарат.  

Постановка проблеми в загальному вигляді. Одним із ключових напрямів розвитку 

сучасних систем озброєння та військової техніки є створення високоточної зброї та 

автономних роботизованих комплексів, здатних ефективно діяти в умовах інтенсивних 

завад, застосування засобів радіоелектронної боротьби (РЕБ), дезінформації та часткової 

втрати даних датчиків. Для безпілотних літальних апаратів (БпЛА), наземних 

роботизованих платформ і керованих засобів ураження критичною є точність оцінювання 

їх просторового положення й орієнтації в реальному часі, оскільки від цього 

безпосередньо залежить точність наведення та ймовірність ураження цілі [1–13]. 

Типовий датчиковий комплекс високодинамічного апарата включає інерціальні, 

супутникові, магнітометричні й оптичні вимірювальні канали. Інтеграція та узгоджене 
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оброблення даних цих датчиків дозволяє суттєво підвищити точність і завадостійкість 

навігації, однак вимагає застосування спеціалізованих алгоритмів злиття даних (data 

fusion, DF) [1–4, 9–12, 16–18]. Така конфігурація покращує завадостійкість, але суттєво 

ускладнює завдання злиття даних. У реальних умовах експлуатації мають місце: 

вібраційні та ударні навантаження, що впливають на інерціальний вимірювальний 

модуль (Inertial Measurement Unit – IMU); 

групові викиди у вимірюваннях глобальної навігаційної супутникової системи (Global 

Navigation Satellite System / Global Positioning System – GNSS / GPS) під дією засобів РЕБ; 

локальні магнітні завади; 

нестабільність та часткова втрата кадрів оптичного каналу (дим, пил, перешкоди, 

зміна освітлення). 

За таких умов істотно порушуються припущення щодо лінійності моделей 

і гаусівського характеру шумів, на яких ґрунтується оптимальність класичного фільтра 

Калмана (ФК). Це призводить до збільшення похибок оцінювання стану та деградації 

характеристик наведення. 

Отже, актуальним є завдання розроблення алгоритму оцінювання стану 

високодинамічних апаратів, який зберігає математичну строгість та рекурсивну структуру 

Калмана, але доповнюється адаптивною нейромережевою корекцією, здатною 

компенсувати нелінійні та контекстно залежні похибки в даних датчиків. 

Аналіз останніх досліджень і публікацій. Теоретичні основи ФК, умови його 

оптимальності та властивості наведено в класичних роботах Р. Калмана та його 

послідовників, а також у фундаментальних монографіях з оптимальної фільтрації та 

оцінювання стану [7–13]. На основі цих результатів побудовано широкий спектр 

навігаційних систем і систем керування в авіаційній, космічній та наземній техніці [3–5, 

12, 18]. Окремі аспекти оптимізації польоту й управління БпЛА, зокрема з урахуванням 

використання повітряних ретрансляторів і режимів радіомоніторингу, розглянуто 

в роботах [26, 27]. 

Для врахування нелінійної динаміки та нелінійних функцій вимірювань широко 

застосовують розширений ФК (Extended Kalman Filter – EKF) та сигма-точковий 

(Unscented Kalman Filter – UKF) ФК. Ці методи дозволяють підвищити точність 

оцінювання стану порівняно з лінійним ФК, однак залишаються чутливими до некоректно 

заданих коваріацій шумів, грубих викидів у вимірюваннях датчиків та порушення 

припущень щодо гаусівського характеру шуму [4, 5, 8, 14, 19]. 

Питання спільного оброблення та злиття даних IMU, GNSS, магнітометра та оптичних 

каналів детально розглянуто в сучасних роботах з навігації та робототехніки, де 

проаналізовано інтеграцію GPS / IMU в зашумленому середовищі, побудову схем 

у змінних помилки (error-state схем) для GNSS / IMU, а також застосування інерціальних 

та візуальних датчиків у мікролітальних апаратах, що працюють у складних умовах [1–4, 

9–12, 16–18]. Окремо в [3] розглянуто параметричний синтез алгоритмів фільтрації для 

інерціальних навігаційних систем БпЛА, а в [24, 25] – побудову баз даних і навчально-

тренувальних систем для автоматизованого оброблення інформації та підготовки 

операторів безпілотних авіаційних комплексів. 
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Окремий напрям становлять дослідження, у яких класичний ФК поєднують із 

нейронними мережами або глибинними моделями. У працях [6, 9, 15, 19–21] 

запропоновано різні варіанти Deep Kalman Filters, нейромережеву апроксимацію 

нелінійної динаміки, а також гібридні схеми, де нейромережеві модулі коригують 

параметри ФК або формують допоміжні сигнали для підвищення точності оцінювання 

стану. Додатково в [28] запропоновано алгоритм формування набору апріорних даних для 

згорткових нейронних мереж, призначених для автоматизованого оброблення цифрових 

аерознімків, що є релевантним для побудови інтелектуальних модулів аналізу бортової 

оптичної інформації. 

Отже, доцільно розглянути структурну інтеграцію нейронної мережі в контур ФК для 

задач наведення й злиття даних датчиків у високодинамічних умовах. 

Формулювання завдання дослідження. Мета роботи – підвищення точності 

оцінювання стану високодинамічних апаратів у системах наведення та злиття даних 

датчиків шляхом розроблення та дослідження нейронного ФК (НФК), який поєднує його 

класичний варіант із нейромережевою корекцією. 

Для досягнення мети необхідно розв’язати такі завдання: 

1) побудувати дискретну математичну модель динаміки високодинамічного апарата 

й моделей вимірювань датчиків IMU / GNSS / MAG / CAM; 

2) сформулювати обмеження застосування класичного ФК в умовах нелінійної 

динаміки й завад; 

3) запропонувати структуру НФК, включно зі схемою злиття даних датчиків та 

інтерфейсом із системою наведення; 

4) розробити алгоритм НФК, включаючи формування вхідного вектора ознак для 

нейронної мережі; 

5) визначити архітектуру нейромережевого модуля, процедуру його навчання 

й інтеграцію з ФК; 

6) провести імітаційне моделювання та виконати порівняльний аналіз НФК 

і класичного ФК за показниками точності та стійкості. 

Виклад основного матеріалу 

Структура системи злиття даних датчиків на основі НФК. У типовому 

датчиковому комплексі високодинамічного апарата використовуються IMU, приймач 

GNSS / GPS, магнітометр (MAG) та оптичний датчик (камера – CAM). Інтеграція 

й узгоджене оброблення даних цих датчиків дозволяє суттєво підвищити точність та 

завадостійкість навігації, однак вимагає застосування спеціалізованих алгоритмів злиття 

даних [1–4, 9–12, 16–18]. 

На рис. 1 показано структурну схему системи. Високодинамічний апарат генерує 

фізичний рух, який вимірюється датчиками. На основі вектора вимірювань 
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блок злиття даних на базі НФК формує оцінку стану 𝐱̂𝑘
𝑁𝐾𝐹, що передається в систему 

наведення та керування. 

 
 

Рис. 1. Структура багатодатчикової системи злиття даних на основі НФК 

 

Особливості оброблення даних оптичного каналу. Оптична камера 

в запропонованій структурі системи злиття даних не розглядається як джерело «сирих» 

зображень для безпосереднього введення у фільтр, а використовується як вимірювальний 

канал, що формує компактні вектори спостережень. На борту реалізується конвеєр 

попереднього оброблення кадрів, який включає корекцію дисторсії за результатами 

калібрування, нормалізацію яскравості та фільтрацію шуму для підвищення стабільності 

подальших обчислень. Після цього виконуються алгоритми виділення ключових точок або 

цілі (об’єкта відстеження) та їхнього трекінгу між сусідніми кадрами. Із використанням 

відомої внутрішньої орієнтації камери та геометричної моделі проєкції за положенням цілі 

в площині зображення відновлюється напрямок лінії візування в навігаційній системі 

координат або оцінюється відносний рух платформи. На основі цих оцінок формується 

вектор вимірювань оптичного каналу, який може містити, зокрема, кути напрямку на ціль 

або псевдовимірювання координат і швидкості носія. Якість кадру (кількість надійно 

трекованих ознак, середня похибка репроєкції) використовується для адаптивного 

налаштування коваріаційної матриці шуму оптичного каналу в структурі ФК, що підвищує 

стійкість системи до деградації зображення в умовах диму, опадів чи різких змін 

освітлення. 

Математична модель динаміки та даних датчиків. Вектор стану 

високодинамічного апарата задається як x 

 Tzyxzyxk vvvppp =x , 

де zyx p,p,p  – координати; 

zyx v,v,v  – компоненти швидкості;  

 ,,  – кути тангажа, крену та курсу. 

Дискретну модель процесу запишемо в такий спосіб: 

( )kkkkkkkk ,N, QOwwuBxFx ++= −1
, (1) 
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де kF – матриця переходу стану;  

kB – матриця керування;  

ku  – вектор керуючих впливів; 

kw  – шум процесу.  

Для малих інтервалів дискретизації t  матриця переходу стану kF , як правило, має 

блочно-трикутну структуру, у якій підматриці, що відповідають координатам 

і швидкостям, містять елементи з множником t . 

Модель вимірювань має такий вигляд: 

( )kkkkkk ,N, ROvvxHz += , (2) 

де kH  – матриця спостереження;  

kR  – коваріація шуму вимірювань.  

Блокова структура матриці kH  дозволяє виділити підматриці, що відповідають 

окремим підсистемам IMU, GNSS, MAG та CAM; наприклад, для датчика GNSS 

у відповідних рядках відображаються лише координати zyx p,p,p . 

Інерціальні вимірювання моделюються як 

 ++=++= nbωωnbαα truemaatruem , , 

де ab , b  – дрейф;  

an , n  – шум. 

Вимірювання GNSS запишемо як 

gpstrue

GPS

m npp += , 

а магнітометр – як 

( ) mearthm ,, nmRm += , 

де ( ) ,,R  – матриця повороту;  

earthm  – вектор магнітного поля Землі. 

Оптичний датчик (камера) описується загальною нелінійною функцією: 

( ) camkcam

CAM

k nxhz += . 

У результаті система «Процес – вимірювання» має суттєву нелінійність та змішані 

шуми, що обмежує ефективність класичного ФК. 

Класичний ФК. Рекурсивні рівняння ФК складаються з етапів прогнозу та 

оновлення. Крок прогнозу: 

,

;ˆˆ

k

T

kk\kkk\k

kkk\kkk\k

QFPFP

uBxFx

+=

+=

−−−

−−−

111

111
 (3) 
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а крок оновлення: 

( ) .

;ˆˆ

;

;

;ˆ

k\kkkk\k
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yKxx

SHPK

RHPHS

xHzy

 (4) 

Позначимо k\k

KF

k
ˆˆ xx =  – оцінку стану після кроку оновлення ФК. Саме її в подальшому 

коригує нейронна мережа в складі НФК. 

Структура НФК. На відміну від відомих deep Kalman filters (глибоких варіантів ФК) 

та нейромережевих схем корекції параметрів фільтра, у запропонованому підході нейронна 

мережа використовується як надбудова над класичним ФК, що формує корекційний 

доданок kx  до оцінки 
KF

kx̂ . Така резидуальна структура дозволяє зберегти математичну 

прозорість та стійкість класичного ФК, одночасно компенсуючи нелінійні та контекстно 

залежні похибки за рахунок навчання на даних імітаційного моделювання [6, 9, 19–21]. 

На рис. 2 наведено структурну схему НФК. Класичний ФК приймає на вході вектори ku , 

kz , формує оцінку 
KF

kx̂  і вектор інновації ky . Ці величини разом із вектором вимірювань kz  

подаються на вхід нейронної мережі, яка обчислює корекційний доданок kx . 

 

Рис. 2. Структура НФК як надбудови над класичним ФК 

Вхідний вектор ознак для нейромережевого модуля має такий вигляд: 



















=

k

k

KF

k

NN

k

ˆ

y

z

x

u  ℝ𝑚. 

Нейронна мережа апроксимує відображення 

( )NN

kk f ux = , 

де f  – багатошаровий перцептрон із параметрами  . 

Остаточну оцінку стану визначаємо як 
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k

KF

k

NKF

k
ˆˆ xxx += . (5) 

Тобто НФК реалізує резидуальну корекцію: ФК забезпечує модельну основу, 

а нейронна мережа компенсує систематичні та нелінійні похибки. За рахунок резидуальної 

структури та компактної архітектури багатошарового перцептрона (Multi-Layer Perceptron – 

MLP) обчислювальна складність НФК зростає лише на додатковий порядок ( )MLPnO  

операцій множення-додавання, що є прийнятним для вбудованих процесорів реального часу. 

Алгоритм НФК. Алгоритм роботи НФК наведено у вигляді блок-схеми (рис. 3). На 

кожному кроці дискретизації виконується певна послідовність дій. 

 

Рис. 3. Блок-схема алгоритму роботи НФК 

Структура нейромережевого модуля. Структуру нейромережевого модуля в складі 

НФК наведено на рис. 4. Як апроксиматор корекційного доданка використано MLP із 

двома прихованими шарами, що формує вектор корекції стану kx . 

 

Рис. 4. Структура MLP в складі НФК (архітектура:m→ 64 → 32→ n) 
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Нехай розмір вхідного вектора ознак – m, а розмір вектора стану – n. Архітектура 

мережі має такий вигляд: 

( )
( )

,

;σ

;σ

k

NN

k

323

21222

1111

bhWx

bhWh

buWh

+=

+=

+=

 

де ( )1σ , ( )2σ  – функції активації (ReLU); 

iW , ib  – матриці ваг та вектори зсувів. 

Типові розміри шарів  

m → 64 → 32 → n  

забезпечують компроміс між точністю апроксимації та обчислювальною складністю. 

Остаточна оцінка стану матиме такий вигляд: 

k

KF

k

NKF

k
ˆˆ xxx += . 

Навчання мережі виконується офлайн на основі імітаційного моделювання. Як цільову 

функцію обрано середньоквадратичну похибку між істинним станом та оцінкою НФК: 

( ) ( )( ) .fˆ
N

L
N

k

NN

k

KF

k

true

k

2

1

1
 = +−= uxxθ  (6) 

Оптимізація здійснюється методом Adam. Після навчання параметри фіксують, а в режимі 

реального часу НФК працює без подальшого донавчання, що відповідає обмеженням за 

ресурсами бортових процесорів. 

Результати імітаційного моделювання. Імітаційне моделювання проводилося для 

кількох типових сценаріїв руху високодинамічного апарата: 

прямолінійного польоту зі сталою швидкістю; 

польоту з інтенсивними маневрами (зміна курсу та тангажа); 

сценарію з викидами у вимірюваннях GNSS (групові пропуски, шумові сплески); 

сценарію з підвищеними шумами IMU та деградацією оптичного каналу. 

Для кожного випадку оцінюються такі параметри: 

середньоквадратична похибка (Root Mean Square Error – RMSE) координат RMSEр; 

середньоквадратична похибка швидкостей RMSEv; 

максимальне відхилення траєкторії; 

час обчислення одного кроку фільтрації. 

Результати імітаційного моделювання узгоджуються з тенденціями, показаними 

в роботах із мультисенсорного злиття та нейронно-інтегрованих ФК [1–4, 9–12, 16, 19–21], 

і демонструють, що використання НФК дозволяє зменшити середньоквадратичну похибку 

оцінювання координат та швидкостей на 15–40% порівняно з класичним ФК. Для 

сценарію інтенсивних маневрів RMSE координат за горизонталлю зменшується з 12,4 м 



_____________________________________Збірник наукових праць ЖВІ. 2025. Випуск 29 

 133 

(ФК) до 7,1 м (НФК), а похибка швидкості – з 1,8 м/с до 1,1 м/с. У сценарії з викидами 

GNSS максимальне відхилення траєкторії зменшується приблизно з 65 м до 38 м, що 

свідчить про більш гладку траєкторію та менше відхилення від істинного положення. 

Час обчислення кроку НФК перевищує час роботи класичного ФК лише на 10–20% 

завдяки компактності MLP, що підтверджує можливість реалізації алгоритму на 

вбудованих платформах реального часу. 

Практичні аспекти реалізації. Запропонований підхід до побудови НФК нежорстко 

прив’язаний до конкретного типу носія чи елементної бази і може бути реалізований на 

типовій вбудованій обчислювальній платформі, яка забезпечує виконання алгоритмів 

оцінювання стану та базового оброблення зображень у режимі реального часу. Вимоги до 

бортового обчислювача визначаються розмірністю вектора стану та частотою оновлення 

ФК: для вектора стану розмірності n 10–20 та частоти оновлення 50–100 Гц достатньо 

модулів, що забезпечують виконання порядку 106–107 арифметичних операцій за один 

цикл. Нейронна складова НФК представлена компактним багатошаровим перцептроном 

з одним-двома прихованими шарами, що також не потребує надлишкових обчислювальних 

ресурсів. Датчиковий комплекс включає інерціальний вимірювальний модуль, приймач 

глобальної навігаційної супутникової системи, магнітометр та оптичну камеру, які 

належать до типових вимірювальних засобів сучасних високодинамічних рухомих 

платформ. Отже, реалізація НФК можлива на наявній номенклатурі вбудованих 

обчислювальних засобів без жорстких вимог до використання спеціалізованих 

високопродуктивних процесорів. 

Висновки. Виконано аналіз можливостей застосування класичного ФК для 

оцінювання стану високодинамічних апаратів із багатодатчиковим забезпеченням (IMU, 

GNSS, MAG, CAM). Показано, що за умов нелінійної динаміки та наявності викидів 

у вимірюваннях датчиків традиційні схеми фільтрації забезпечують недостатню точність. 

Запропоновано структуру НФК, у якій ФК виконує роль модельного ядра, а нейронна 

мережа формує корекційний вектор kx на основі оцінки ФК, інновації та вектора 

вимірювань. 

Розроблено алгоритм НФК і показано, що завдяки резидуальній структурі 

k

KF

k

NKF

k
ˆˆ xxx +=  нейромережевий модуль може бути реалізований у вигляді компактного 

MLP, придатного для бортових процесорів. 

Результати імітаційного моделювання свідчать про зниження середньоквадратичної 

похибки оцінювання координат та швидкостей на 15–40% порівняно з класичним ФК, а також 

про підвищення стійкості до викидів у вимірюваннях GNSS та підвищеного шуму IMU. 

Подальші дослідження доцільно спрямувати на інтеграцію рекурентних архітектур 

простору станів (state-space архітектур), зокрема мереж довгої короткочасної пам’яті (Long 

Short-Term Memory), керованих рекурентних блоків (Gated Recurrent Unit) та Mamba-

подібних моделей, у структуру НФК, а також на використання адаптивних стратегій 

налаштування коваріацій шумів і параметрів ФК у реальному часі, що відповідає сучасним 

тенденціям розвитку гібридних систем оцінювання стану [6, 9, 15, 19–22]. За матеріалами 

цієї роботи подано заявку на винахід України № a202506585, а подальші дослідження 

спрямовано на експериментальну апробацію та адаптацію під обмежені бортові ресурси. 
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Окремим напрямом є експериментальна апробація запропонованого алгоритму 

на реальних зразках озброєння та військової техніки. Передбачається реалізація НФК на 

бортових обчислювальних модулях із обмеженими ресурсами та відпрацювання алгоритму 

в умовах полігонних випробувань із застосуванням реальних сценаріїв дії засобів РЕБ, 

дезінформації та часткової втрати даних датчиків. 
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V. A. Romanko, O. M. Sribnyi  

INTEGRATION OF A NEURAL KALMAN FILTER INTO GUIDANCE OF HIGH-

DYNAMIC PLATFORMS 

The paper addresses the problem of improving the accuracy of state estimation for high-

dynamic platforms such as unmanned aerial vehicles, robotic ground platforms and guided 

munitions by integrating methods of artificial intelligence into the structure of the Kalman filter. 

It is shown that the classical Kalman filter, despite its wide use in guidance and navigation 

systems, has significant limitations under nonlinear dynamics, non-Gaussian noise and the 

presence of gross errors in sensor data.  

A hybrid approach is proposed in which the classical Kalman filter is supplemented by 

a neural network that forms an adaptive correction of the state estimate. A mathematical model 

of multi-sensor data fusion is developed that integrates measurements of inertial measurement 

units, satellite navigation receivers, magnetometers and optical cameras.  

The structure of the proposed algorithm, the formation of the input vector for the neural 

network, the training procedure based on numerical simulation and the use of the corrected 

estimate in guidance and stabilization loops are described. Simulation results show a reduction 

of approximately 15–40% in the root-mean-square error of position and velocity estimates 

compared with the classical Kalman filter, together with increased robustness to outliers in 

satellite measurements and elevated noise in inertial sensors. The possibility of implementing the 

proposed algorithm on on-board computing modules with limited resources is substantiated. 

Further research should be directed towards the integration of recurrent state-space 

architectures, in particular Long Short-Term Memory networks, Gated Recurrent Unit networks, 

and Mamba-like models into the structure of the neural Kalman filter. 

Keywords: Kalman filter; neural Kalman filter; sensor data fusion; inertial navigation; 

unmanned aerial vehicle; guided munition; artificial intelligence; guidance of high-dynamic 

platforms. 


